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Abstract
There are numerous situations in physics and other disciplines which can be described at
different levels of detail in terms of probability distributions. Such descriptions arise either
intrinsically as in quantum mechanics, or because of the vast amount of details necessary for a
complete description as, for example, in Brownian motion and in many-body systems. We show
that an application of the principle of maximum entropy for estimating the underlying
probability distribution can depend on the variables used for describing the system. The choice
of characterization of the system carries with it implicit assumptions about fundamental
attributes such as whether the system is classical or quantum mechanical or equivalently
whether the individuals are distinguishable or indistinguishable. We show that the correct
procedure entails the maximization of the relative entropy subject to known constraints and,
additionally, requires knowledge of the behavior of the system in the absence of these
constraints. We present an application of the principle of maximum entropy to understanding
species diversity in ecology and introduce a new statistical ensemble corresponding to the
distribution of a variable population of individuals into a set of species not defined a priori.
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1. Introduction

The principle of maximum entropy [1–12] is a widely used
variational method for the analysis of both complex equilib-
rium and non-equilibrium systems and is being increasingly
employed in a variety of contexts such as ecology [13–15],
nuclear magnetic resonance spectroscopy [16], x-ray diffrac-
tion [17], electron microscopy [18], and neuroscience [19]
for inference from incomplete data. In many instances, it
is convenient and/or useful to describe a system and known
constraints either in terms of a full description or in a coarse-
grained manner. Of course, one would expect and require that
the results of any analysis be robust under coarse-graining.

A key issue in combinatorics is that of distinguishability
or lack thereof. Imagine rolling a pair of dice—an outcome
of two specific distinct numbers on the dice (say, a three
and a five) is twice as likely as getting the same specific
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number on both dice (say, a three and a three). This is the
premise underlying classical statistical mechanics. The two
dice are distinguishable. The same experiment carried out
with quantum dice, which are indistinguishable, yields exactly
the same probability for the two outcomes in which the two
numbers are the same or different. The maximum entropy
principle is traditionally applied in statistical mechanics to
study the distribution of balls (electrons, atoms, molecules
etc)—each colored differently and distinguishable or colored
the same and indistinguishable—into a set of boxes (energy
levels). Boltzmann statistics results when one considers
distinguishable balls, and Bose–Einstein statistics for the
case of indistinguishable balls. Fermi–Dirac statistics arises
when there is a ceiling on the maximum occupancy of
indistinguishable balls in a box.

Consider a snapshot of a tropical forest comprised of
trees of many different species. A cornerstone of studies of
biodiversity is the relative species abundance, which measures
the fraction of species having a given abundance. This measure
is particularly important for rare species, i.e. species having a
low abundance, because these species could become extinct
(at least in the local region) more readily than the more
abundant species. The species–area relationship is a very
useful benchmark as well—it measures the number of distinct
species as a function of the sampled area. An important use of
this measure arises when one wishes to estimate the effect on
biodiversity of diminishing the area available to an ecosystem
due to habitat destruction or climate change. One can imagine
that the trees in a forest are akin to distinguishable balls that
have been categorized into species or boxes. The measures in
ecology are therefore somewhat analogous to standard physics
distributions and one might ask whether they can be elucidated
using the principle of maximum entropy to determine the most
probable outcome given certain constraints.

We will show that the details of the dynamics play a
pivotal role in the combinatorics to be used in the maximum
entropy principle. More importantly, the very choice of how
one characterizes a system carries with it implicit assumptions
about fundamental attributes such as whether the system is
classical or quantum mechanical or equivalently whether the
individuals are distinguishable or indistinguishable. Thus,
unless one is careful, the results that one obtains may be an
artifact of an improper choice.

Our presentation is pedagogical as befits a topical
review. There are a number of specialized reviews of the
principle of maximum entropy with application to physics [12],
information theory [20] and natural language [21] just to cite
a few examples. The paper is organized as follows. In
section 2, the concept of entropy is introduced in a rather
intuitive way and the maximum entropy (‘maxent’) principle
is explained. Section 3 contains two paradigmatic examples of
the use of the maxent principle: the case of distinguishable and
indistinguishable individuals. The relative entropy is derived
within a simple example and its properties are discussed
in section 4 together with the maximum relative entropy
(‘maxrent’) principle [15]. The a priori probability entering
in the definition of relative entropy is related to the system
dynamics in section 5. Section 6 contains a critique of the

use of the maxent principle in ecology. A new statistical
ensemble is introduced which is suitable for describing the
relative species abundance in ecology. We conclude with a
brief summary in section 7.

2. General considerations

Consider the familiar example of rolling a cubic dice N
times. The total possible number of distinct outcomes is
represented by E and for a dice E = 6. In ecology, one
may similarly carry out a thought experiment in which N
represents the number of independent realizations or snapshots
of an ecological community under equivalent conditions. Each
realization can be characterized by various attributes, e.g.,
the species abundances. E , in this case, would represent
the total number of possible distinct measures of the species
abundances. In the absence of any additional information,
one might assign equal probability to all E outcomes stated
as the principle of insufficient reason by Laplace. However,
in the presence of new information, which can be expressed
as constraints, the challenge is to assign probabilities to the
E outcomes which ensures that the constraints are satisfied
without making any unwarranted additional assumptions.

Let �n ≡ (n1, n2, . . . , nE ) denote a situation in which the
N realizations yield n1 instances of outcome 1, n2 instances
of outcome 2, . . ., and nE instances of outcome E . Each
realization is postulated to yield one out of E possible
outcomes. Thus the total number of conceivable distinct results
of the outcome of all N realizations is E N . Of these, the
number corresponding to �n ≡ (n1, n2, . . . , nE ) is given, from
simple combinatorics, by

W (�n) = N !
∏E

i=1 ni !
(1)

with the constraint
E∑

i=1

ni = N. (2)

The numerator in equation (1) represents all possible choices of
the N realizations whereas the denominator takes into account
the fact that unlike interchanges between different outcomes,
interchanges within the same outcome are unobservable
(figure 1).

When n1, n2, . . . are all large, using Stirling’s approxima-
tion, ni ! ≈ e−ni nni

i , one obtains

ln W (�n)

N
=

N→∞
−

∑

i

Pi ln Pi ≡ H( �P), (3)

where Pi , the frequency of occurrence of the i th event, is given
by

Pi = ni

N
. (4)

H is the entropy of the ‘distribution’ probability �P ≡
(P1, P2, . . . , PE ). Equation (3) tells us that if we repeat the
‘experiment’ N times, then the number of times we get the
distribution �n ≡ (n1, n2, . . .) = N �P is proportional to

W (�n) ∝ exp (NH( �P)). (5)
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Figure 1. Different counting schemes for distinguishable and
indistinguishable individuals. As an example, consider N = 3,
S = 2. For the case of distinguishable individuals (shaded circles in
the top three panels), there are three distinct configurations with

�n = (n1 = 2, n2 = 1), W (�n)
(1)= 3 (interchanging the two individuals

within a species does not lead to a new configuration). In terms of the
�i representation (see section 3), the configurations above are
�i = (i1, i2, i3) = (1, 1, 2), (1 ,2, 1) and (2, 1, 1) where the first
individual is white, the second is grey, and the third is black. For
indistinguishable individuals (black circles) the configurations above
are identical and there is no way to detect a difference among the
three cases. Thus for any �n, the corresponding number of ways of
obtaining it is WI (�n) = 1, i.e. there is just one way to get the
distribution �n = (n1, n2, . . . , nS).

Thus the most probable �n ≡ (n1, n2, . . . , nE ) among the total
number of conceivable distinct results of the outcome of all N
realizations is obtained by maximizing the entropy (3) under
the constraint

E∑

i=1

Pi = 1, (6)

which is termed the normalization condition. If this is the
only constraint in the problem, then the maximum of H( �P)

is attained with Pi = 1/E , as one would intuitively expect
(see also section 3). A few important properties of the
entropy are recalled and derived in appendix A. It is slightly
technical and is not necessary for understanding the rest of the
paper.

The existence of other knowledge about the system results
in additional constraints which serve to limit the range of
possible �ns or equivalently the possible �Ps. This additional
knowledge can often be encapsulated in the form of constraints

on averages of certain quantities. For example, a quantity Q,
whose average value is Q̄ and which has value Qi when one
has an outcome i (for example, for the number rolled in a dice
throw, Qi = i ), obeys the constraint

〈Q〉 ≡
E∑

i=1

Pi Qi = Q̄. (7)

In order to find the maximum of H (P) = − ∑
i Pi ln Pi

subject to the constraints given by equations (6) and (7) one
can introduce the Lagrange function with Lagrange multipliers
α and β [22] (see appendix B). Taking derivatives with respect
to Pj and setting them to zero:

0 = ∂

∂ Pj

[

−
∑

i

Pi ln Pi − α
∑

i

Pi − β
∑

i

Pi Qi

]

= −1 − ln Pj − α − β Q j (8)

one gets the following expression:

Pi = e−1−α−βQi . (9)

Applying the normalization constraint equation (6), one gets

Pi = e−βQi /Z , (10)

where Z = ∑
i e−βQi . Usually constraint equation (7) cannot

be solved explicitly and can be expressed in the compact form

Q̄ = −∂ Z

∂β
. (11)

It can be shown that W (�n) in equation (1) is unique and
has a sharp maximum corresponding to the most probable
distribution as N → ∞.

3. Distinguishable and indistinguishable individuals

3.1. Boltzmann statistics

Consider N distinguishable individuals distributed among S
species (boxes). Let P(k), the normalized relative species
abundance, denote the probability that a given species is
comprised of k individuals. Let the αth individual (α runs from
1 to N ) belong to the iαth species (the range of iα is from 1 to
S) and thus E = SN . The outcome (event) can be denoted by
the i ≡ (i1, i2, . . . , iN ) (individual 1 in species i1, individual 2
in species i2 etc). Let us impose a constraint that the average
number of individuals in a specific species, e.g. species 1, is
equal to k̄.

This corresponds to defining Qi = ki ≡ ∑N
α=1 δiα,1, the

number of individuals in species 1 in the i ≡ (i1, i2, . . . , iN )

event, and δi, j is the Kronecker delta function, equal to 1
if i = j and zero otherwise. Thus the constraint becomes
〈k〉 = ∑

i Pi ki = k̄. Using the general results of section 2 one
obtains

Pi = e−βki

Z
(12)
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with

Z =
∑

i

e−βki =
∑

i1,...,iN

e−β
∑N

α=1 δiα ,1

=
( S∑

i=1

e−βδi,1

)N
= (S − 1 + e−β)N . (13)

The constraint k̄ = 〈k〉 leads to

k̄ = − ∂

∂β
ln Z = N

1 + (S − 1)eβ

S
1→ N
S e−β , (14)

i.e. β = ln(NS /k̄). Note that in the absence of the constraint on
〈k〉 there is no Lagrange multiplier, that is β = 0, implying the
obvious result 〈k〉 = N/S.

In order to obtain the relative species abundance, P(k), we
carry out a coarse-graining procedure in which we sum Pi over
all configurations in which there are k individuals in the species
of interest. (The coarse-graining, as defined here, is merely a
change of description to a coarser level. For example, one may
consider tossing 10 coins and asking what the outcome for each
coin toss was—i.e. was the first coin a head, was the second a
head etc. This is a fine-level description when the coins are
distinguishable. Alternatively one may simply record the total
number of heads (and tails) and this would correspond to a
coarse-grained description of the same coin toss experiment.)
When N and S are large, one obtains

P(k) =
E∑

i=1

Piδk,ki = k̄ke−k̄/k!. (15)

This is the familiar Poisson distribution or the grand-
canonical Boltzmann distribution, when all energy levels are
the same.

3.2. Bose statistics

Let us now consider the case of indistinguishable individuals.
The best we can do is to study how many individuals
there are in a given species, called the occupation number
representation. We are unable to discern the identity of any
individual and thus we work directly with P(k). We seek to
maximize the entropy

H(P) ≡ −
∑

k

P(k) ln P(k) (16)

subject to the same constraints as before. Following the
same procedure as in the previous subsection, one obtains the
familiar grand-canonical Bose–Einstein distribution (with all
energy levels being the same)

P(k) = e−βk(1 − e−β), (17)

which is a pure exponential function. One finds that

k̄ = 〈k〉 = 1

eβ − 1
, (18)

yielding

P(k) = k̄k

(1 + k̄)k+1
. (19)

Note that equations (19) and (15) are different. Indeed
they correspond to different underlying (implicit) hypotheses
regarding the nature of the distinguishability of individuals.
This is reflected in the maximum entropy principle by imple-
menting a specific representation, i.e. the label representation
for distinguishable individuals used in the previous subsection
and occupation number representation for the indistinguishable
case used in equation (16). In other words, how one chooses
to characterize the system and the level of description one
uses carry with them implicit assumptions pertaining to the
distinguishability or lack thereof of the individuals. The
issue of indistinguishability may be viewed as another type of
constraint: all microscopic configurations corresponding to the
interchange of any two individuals ought to be considered as
the same configuration. The choice of the occupation number
representation takes care of this constraint automatically and it
is in fact the appropriate one for deriving quantum statistics.
When the individuals are indistinguishable, all the information
that one has is encapsulated by P(k). The conundrum is that
the result obtained on applying the maximum entropy principle
to Pi and then coarse-graining the result to obtain P(k) in
equation (15) is different from that obtained on applying the
maximum entropy principle directly to P(k), equation (19). In
other words, the operations of the entropy maximization and of
coarse-graining do not commute.

4. Relative entropy and the maxrent principle

We turn now to a resolution of this puzzle by invoking the
concept of relative entropy [23, 24, 15]. We suggest that the
correct application of the principle of maximum entropy entails
the maximization of the relative entropy

HC−G( �P) ≡ −
∑

i

Pi ln
Pi

P0i
(20)

subject to the constraints imposed by our partial knowledge
of the system. The subscript C-G stands for coarse-grained.
P0i is the reference probability and has the physical meaning
that, on maximizing the entropy, Pi is equal to P0i in the
absence of any constraints. The crucial observation is that
one must have knowledge of P0i in order to apply the
method successfully. The lesson learned from the success
of the method in physics is that when one uses as complete
a description of a system as possible, the reference term
is uniform. Thus for distinguishable individuals one can
use the label representation (which is the most detailed
representation) and set P0i = const and obtain Boltzmann
statistics. Should one choose to use an occupation number
representation for distinguishable individuals, one would need
to transform the uniform P0i in the label representation to the
occupation number representation and again obtain Boltzmann
statistics. However, were one to use the occupation number
representation and employ a uniform P0i , one would obtain
Bose–Einstein statistics instead of Boltzmann statistics. This
underscores the fact that the most complete description of
indistinguishable individuals necessarily involves use of the
occupation number representation—the label representation is
not suitable for indistinguishable individuals.

4
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In order to understand the form of the relative entropy,
equation (20), let us consider a simple example pertaining to
our original case of distinguishable individuals which allowed
us to introduce the concept of entropy and the maximum
entropy principle. Suppose that each species has a fine
structure, i.e. the i th species contains gi subspecies. In this
case we have to deal with a probability for the αth individual
(α = 1, . . . ,N ) to be found in the iαth species and in the κiα
th subspecies (κi = 1, . . . , gi ). The outcome is now given
by (i1, κi1, i2, κi2 , . . . , iN , κiN ) ≡ iκ . The entropy is simply
obtained by generalizing equation (3) to

H( �P) = −
∑

iκ

Piκ ln Piκ . (21)

Let us assume that the constraints do not depend on κ ≡
(κi1, κi2 , . . . , κiN ): ∑

iκ

Piκ = 1, (22)

∑

iκ

Piκ Qi = Q̄. (23)

The former is the normalization condition and the latter was
introduced earlier as equation (7). Maximizing the entropy
with the two constraints yields

Piκ = e−βQi /Z , (24)

as in equation (12), which is independent of κ . Thus the
probability of observing the outcome i ≡ (i1, i2, . . . , iN ),
i.e. the first individual in species 1, the second individual in
species 2 etc independent of the subspecies they belong to, is
given by the (marginalized) probability

Pi ≡
∑

κ

Piκ ∝ e−βQi P0i (25)

with P0i ∝ gi1 gi2, . . . , giN . P0i is the reference probability.
Because the constraints do not depend on κ , one may

substitute

Piκ = Pi

P0i
(26)

in equations (21)–(23). The constraints become
∑

i

Pi = 1 (27)

∑

i

Pi Qi = Q̄. (28)

The key finding is that the correct answer (25) is obtained if
one maximizes the relative entropy

HC−G( �P) ≡ −
∑

i

Pi ln
Pi

P0i
(29)

subject to the constraint equations (27) and (28). This
demonstrates that the coarse-graining procedure requires the
inclusion of the reference term P0i in order to get the
correct answer independent of whether the maximum entropy
principle is applied before or after the coarse-graining. Thus
in the example above, the reference probability is P0iκ = 1

before the coarse-graining, whereas it is P0i = ∑
κ P0iκ after

the coarse-graining (cf equation (25)).
We therefore suggest that the correct and consistent

application of the maximum entropy principle entails the
maximization of the relative entropy [23] instead of the
Shannon entropy in equation (3) subject again to the constraints
obtained from partial knowledge that one has about the system.
The reference term has been discussed in the literature in the
different context of going from a discrete to a continuous
system and is ‘proportional to the limiting density of discrete
points’ [7], where it is needed for dimensional reasons. The
reference term is, however, not commonly invoked as an
essential ingredient in the discrete case. It has been shown
by Shore and Johnson [5] that ‘given a continuous prior
density and new constraints, there is only one posterior density
satisfying these constraints that can be chosen by a procedure
that satisfies the axioms’. The unique posterior can be obtained
by maximizing the relative entropy and the axioms pertain
to uniqueness, invariance, system independence and subset
independence. If P0i can be chosen to be a constant or simply
equal to 1, equation (29) becomes equivalent to equation (3).

We return to the puzzle stated earlier pertaining to the
non-commutability of the application of the maximum entropy
principle and coarse-graining. The puzzle is resolved by the
use of a reference term 1

k! in equation (16), which emerges as
the large-N limit of N !/(k!(N − k)!), yielding the Poisson
distribution equation (15). Indeed, in the derivation of
equation (15), it was implicitly assumed that P0,i is a constant.
On coarse-graining to a description involving the variable k,
one obtains P0(k) ∝ N !

k!(N−k)! , yielding equation (15). (This
result is obtained by summing P0i over all configurations
with k individuals in a given species.) If, instead, one
assumes that P0(k) is a constant, which is appropriate when
individuals are indistinguishable, then one derives the Bose–
Einstein distribution, equation (17). Recently, Dunkel et al
have used the notion of the relative entropy to explore the
relativistic version of Maxwell’s velocity distribution of an
ideal gas. The importance of the relative entropy has been
underscored by Dewar and Porte, who have coined the name
maxrent for the maximization of the relative entropy.

The success of the principle of maximum entropy hinges
on the choice of the reference probability, P0i , and the
identification of the correct constraints not encapsulated in
P0i . In the statistical mechanics examples studied above, the
constraint is imposed by fixing, e.g., the average energy while
the choice of P0i is guided by the postulate that all states are
a priori equally probable when one works at the finest level
of description for the system being studied. Of course, this
follows from the dynamics of the system.

5. System dynamics

Consider the dynamics, in terms of a Markov process, in the
occupation number representation. We will use the subscripts
BE and B to denote the Bose–Einstein and Boltzmann cases
respectively. If the transition rate, W quantum(n j → n j + 1)

(W quantum(n j → n j − 1)) is proportional to n j + 1 (n j )
then, in the stationary state, P0,BE(�n) = const in agreement

5
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with the implicit choice made for the Bose–Einstein case,
equation (17). These transition rates follow from the symmetry
of the quantum wavefunction describing indistinguishable
individuals [25]. For classical (distinguishable) individuals,
the transition rate W classical(n j → n j + 1) is simply constant
whereas the transition rate W classical(n j → n j − 1) is
proportional to n j . The stationary state in this case is given
by P0,B(�n) = 1/

∏
i ni ! and, substituting in equation (29),

one obtains Boltzmann statistics in the occupation number
representation.

We now return to the problem of determination of the
relative species abundance, P(k). Consider the simple case in
which all species are demographically equivalent [26] and are
governed by similar death and birth rates. A naive application
of the maximum entropy principle without the appropriate non-
trivial reference term and with the constraint that the average
population is fixed yields a simple exponential form for the
species abundance

P(k) ∝ e−βk . (30)

as in equation (17) for the case of indistinguishable individuals.
In order to choose the reference entropy, we turn again to
the dynamics as a guide. Consider a Markov process with
transition rates W eco(k → k ± 1) = k + c where c is
a constant term that, for simplicity, is species independent.
When c = 0, one has a simple birth–death process, whose
rate is proportional to the number of individuals of a given
species. A non-zero value of c introduces density dependence
in the birth and death rates with a positive value of c
corresponding to a rare-species advantage [27]. The stationary
state corresponding to these dynamics provides information
pertaining to the reference probability P0,k ∝ 1/(k + c). On
applying the principle of maximum relative entropy with this
reference probability, one finds

P(k) ∝ e−βk/(k + c). (31)

When c = 0, we obtain the celebrated Fisher log-series [28].
(Note that this result can also be obtained from the standard
application of the principle of maximum entropy by imposing
a constraint on the average value of ln n, a constraint with no
ecological basis.) When c is positive, one obtains the result
derived using a density-dependent neutral approach [27] which
fits the relative species abundance data of several tropical
forests fairly well. The key point is that if one chooses to work
in a coarse-grained description, as we did here, it is crucial
to obtain a reference probability arising from the dynamics in
the absence of any constraint. Thus, ignoring the reference
probability corresponds to making precise assumptions on the
dynamics that has led the system to the observed state.

6. Using maxent in ecology

6.1. A new statistical ensemble for ecological systems

As noted above, one can use the principle of maximum relative
entropy to readily derive an expression for the relative species
abundance (RSA) of an ecosystem using the dynamics as a
guide. There have been recent attempts to apply the principle

of the maximum entropy method to ecology. There are
pitfalls that one encounters when one applies the principle in
a naive manner to non-equilibrium phenomena. One also has
to recognize the difference between distinguishable and non-
distinguishable entities as discussed in section 3. And, as
shown in section 4, one ought to work with the set of variables
which provides as complete a description of the system as
possible and hope that, in this description, the reference term,
P0i , is constant.

In order to assess the consequences of the application
of the principle of maximum entropy, let us begin with
the apparently plausible assumption that the abundance of
each species within a single trophic level is observable,
i.e. the species of trees in a tropical forest are labeled and
distinguishable. We will assume that the trees in the forest
belong to functional groups and that there are g species within
each functional group. g plays the role of degeneracy of
the energy levels in statistical mechanics. Let mα

i denote the
population of the αth functional group (α = 1, . . . , g) of the
i th species (i = 1, . . . , S). Let P( �m) denote the probability
distribution function of the m satisfying the constraints

∑

�m
P( �m) = 1, (32)

∑

�m
P( �m)

∑

i,α

mα
i = N, (33)

where the first constraint is simply the normalization and
the second ensures that one has a fixed average population.
As noted earlier, the �m representation is the appropriate
one for deriving quantum statistics—the individuals are
indistinguishable and all the information that one has is
encapsulated by P( �m). The key point is that the �m description
along with the choice of the reference term being equal to 1
is tantamount to the inconsistent assumption of distinguishable
species and indistinguishable trees. Proceeding, nevertheless,
with a naive application of the principle of maximum entropy
yields

P( �m) = Z−1e−β
∑

i,α mα
i where Z = [1 − e−β]−gS . (34)

If one is interested only in the probability distribution of the
total population of each species, ni = ∑

α mα
i , then the

marginalized distribution

P(�n) =
〈∏

i

δ∑
α mα

i ,ni

〉

=
∑

�m: ∑α mα
i =ni

P( �m) (35)

is readily obtainable from equation (34):

P(�n) = Z−1e−β
∑

i ni
∏

i

(
ni + g − 1

ni

)

, (36)

and each ni = 0, 1, . . .. Note that the n-representation
corresponds to a coarser description than the m-representation.
The above result, derived by Harte et al for the g = 1 case,
corresponds to Bose–Einstein statistics for the trees with the
species playing the role of the energy levels, all with the same
energy. (Harte et al [14] considered an additional variable,

6
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Figure 2. Fits of five models to the tree species abundance data from the Sherman, Yasuni, Pasoh, Lambir, Korup and Sinharaja plots, for
trees >10 cm in stem diameter at breast height (see table 1). Dotted, dashed, solid, cross and dash–dotted lines correspond to: Model 1: the
density-dependent equation (31); Model 2: Fisher log-series equation (31) with c = 0; Model 3: exponential distribution equation (38);
Model 4: equation (50); and Model 5: equation (37). The frequency distributions are plotted using Preston’s binning method. The numbers on
the x axis represent Preston’s octave classes. The second and third models (Fisher log-series and exponential distribution) perform relatively
poorly while the three other models provide better fits.

the metabolic energy, and applied the maximum entropy
principle for a joint distribution of �n and the metabolic energy.
Integrating over the metabolic energy, they find an extra 1/ni

for each of the S species yielding the Fisher log-series for
the RSA.) The RSA can be obtained from equation (36) by
summing over all ns but one:

PRSA(n) = (1 − e−β)ge−βn

(
n + g − 1

n

)

(37)

g=1−→ (1 − e−β)e−βn . (38)

If we further coarsen the description in terms of the
variables, φk(�n) = ∑

i δni ,k , the number of species with
abundance k (note that k = 0 is also included here because the
species have labels and therefore one can observe the absence
of species), one finds (for g = 1)

P̂n(φ) =
〈∏

k�0

δφk (�n),φk

〉

= Z−1 S!
∏

k φk !e−β
∑

k kφk . (39)

The RSA is obtained by averaging φn :

〈φn〉
S

= PRSA(n). (40)

The result obtained above is based on inconsistent
assumptions pertaining to the notion of distinguishable species
and indistinguishable individuals.

We now turn to an alternative approach for deducing the
relative species abundance based on a new representation. It is
based on doing away with the idea of labeling the species—
after all, one does not necessarily observe exactly the same
species in all forests around the globe and thus specifying
the abundance of a given species is not appropriate. The
configurations of our system consist of partitioning a variable
population of individuals into a set of species not defined a
priori. Thus the observable quantity is �φ = (φ1, φ2, . . .),
where φk is the number of species with population k and
we are interested in P( �φ), the probability of observing the

7
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Figure 3. Fits of five models to the tree species abundance data of the BCI plots (1982–2005 censuses), for trees >1 cm in stem diameter at
breast height (see table 2) The line style is the same as in figure 2.

Table 1. Maximum likelihood estimates of the five models for the six data sets for tropical forests. In the six plots coordinated by Center for
Tropical Forest Science of the Smithsonian (http://www.ctfs.si.edu), we considered trees with diameter at breast height >10 cm. S is the
number of species, and J is the total abundance. The subscripts in the parameters correspond to the particular model. Log-likelihood
estimators L were calculated using binning-independent methods [27] (the smaller values of L correspond to better fits).

Model 1 2 3 4 5

〈ϕn〉 θ xn

n+c θ xn

n θxn θ

eβ(n+μ)−1
θxn 
(n+g)


(n+1)

Plot S J c1 x1 θ1 L1 x2 θ2 L2

Sherman, Panama 227 21 905 0.49 0.998 39.64 314.24 0.998 35.29 315.89
Yasuni, Ecuador 821 17 546 0.51 0.988 213.18 303.64 0.99 178.57 311.41
Pasoh, Malaysia 678 26 554 1.95 0.993 189.5 365.31 0.995 126.74 397.02
Korup, Cameroon 308 24 591 0.24 0.998 53.04 323.13 0.998 49.61 323.96
Lambir, Malaysia 1004 33 175 2.02 0.991 301 391.24 0.994 195.3 442.21
Sinharaja, Sri Lanka 167 16 936 0.38 0.998 28.26 258.52 0.998 25.73 259.34

Plot x3 θ3 L3 β4 μ4 θ4 L4 g5 x5 θ5 L5

Sherman 0.99 2.38 433.59 0.0026 0.39 0.097 312.81 0.1 0.998 28.16 312.8
Yasuni 0.953 40.3 599.87 0.016 0.34 3.17 319.39 0.04 0.989 170.74 310.46
Pasoh 0.974 17.76 519.53 0.01 1.66 1.81 365.71 0.24 0.991 84.53 366.83
Korup 0.987 3.91 574.37 0.003 0.15 0.15 327.51 0 0.998 49.52 323.97
Lambir 0.97 31.33 620.14 0.012 1.67 3.43 400.44 0.24 0.989 135.75 402.57
Sinharaja 0.99 1.66 364.2 0.0025 0.3 0.067 258.91 0.063 0.998 22.49 258.47
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Figure 4. Fits of five models to the tree species abundance data of the BCI plots (1982–2005 censuses), for trees >10 cm in stem diameter at
breast height (see table 3) The line style is the same as in figure 2.

configuration �φ. Note that k = 0 is excluded because the
species are not labeled.

We impose three constraints:
∑

�φ
P( �φ) = 1 normalization (41)

〈S〉 =
∑

�φ
P( �φ)

∑

k�1

φk average number of species

(42)
〈N〉 =

∑

�φ
P( �φ)

∑

k�1

φkk average number of individuals.

(43)
Maximizing the entropy

H(P) = −
∑

�φ
P( �φ) ln P( �φ) (44)

with the three constraints we get

P( �φ) = Ẑ−1e−β
∑

k>0 φkεk (45)

εk = k + μ (46)

Ẑ(β,μ) ≡
∏

k�1

(1 − e−βεk ), (47)

where β and μ are the Lagrange multipliers corresponding
to the constraint equations (42) and (43), respectively. μ

arises from the constraint on the average number of species,
whereas β originates from the average population constraint.
The above distribution is the same as that of a gas of
indistinguishable particles occupying a discrete equally spaced
ladder-like spectrum with the occupation number of the kth
level being φk . The relative species abundance is easily
calculated to be

P̂RSA(n) ∝ 〈φn〉 = 1

eβεn − 1
, (48)

and corresponds to the familiar Bose–Einstein distribution.
Introducing the degeneracy g one obtains

P̂(φ) =
∏

k�1

{

(1 − e−βεk )ge−βφkεk

(
φk + g − 1

φk

)}

, (49)

9
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Table 2. Maximum likelihood estimates of the five models for the six censuses of the Barro Colorado island plot. Included are the grown
trees and saplings with diameter at breast height >1 cm.

Year S J c1 x1 θ1 L1 x2 θ2 L2

1982 306 235 313 1.93 0.9998 42.82 735.65 0.9999 34.68 746.15
1985 307 242 045 1.61 0.9998 41.86 726.56 0.9999 34.69 735.61
1990 304 244 011 1.88 0.9998 42.12 725.96 0.9999 34.27 737.15
1995 303 229 007 1.26 0.9998 40.45 709.41 0.9998 34.42 716.14
2000 301 213 765 1.50 0.9998 41.37 686.23 0.9998 34.47 694.55
2005 299 208 387 1.84 0.9998 42.28 686.52 0.9998 34.32 697.36

Year x3 θ3 L3 β4 μ4 θ4 L4 g5 x5 θ5 L5

1982 0.999 0.398 1018.42 0.000 26 1.72 0.01 738.50 0.12 0.9998 23.12 736.55
1985 0.999 0.390 1031.74 0.000 25 1.44 0.01 729.41 0.10 0.9998 24.51 728.28
1990 0.999 0.379 1026.36 0.000 25 1.69 0.01 728.87 0.10 0.9998 23.78 729.19
1995 0.999 0.401 1021.88 0.000 26 1.12 0.01 712.11 0.09 0.9998 25.53 710.60
2000 0.999 0.424 991.82 0.000 28 1.33 0.01 689.05 0.09 0.9998 25.44 688.85
2005 0.999 0.430 975.43 0.000 29 1.65 0.01 689.34 0.109 0.9998 24.19 690.05

Table 3. Maximum likelihood estimates of the five models for the six censuses of the Barro Colorado Island plot. Included are the grown
trees only with diameter at breast height >10 cm.

Year S J c1 x1 θ1 L1 x2 θ2 L2

1982 238 20 878 1.04 0.998 46.61 315.68 0.998 37.66 320.80
1985 237 20 712 0.96 0.998 45.87 311.19 0.998 37.53 315.54
1990 229 21 226 1.71 0.998 48.19 309.81 0.998 35.87 319.02
1995 227 21 442 1.68 0.998 47.38 317.43 0.998 35.43 326.26
2000 227 21 193 1.86 0.998 48.47 307.55 0.998 35.51 318.05
2005 229 20 852 1.16 0.998 45.21 307.12 0.998 35.98 312.72

Year x3 θ3 L3 β4 μ4 θ4 L4 g5 x5 θ5 L5

1982 0.989 2.74 429.63 0.0034 0.90 0.15 316.44 0.13 0.997 28.63 316.11
1985 0.989 2.74 426.57 0.0033 0.82 0.15 311.90 0.12 0.997 28.97 311.32
1990 0.989 2.50 411.93 0.0033 1.49 0.15 310.70 0.16 0.997 25.20 312.05
1995 0.989 2.43 418.77 0.0032 1.46 0.14 318.16 0.16 0.997 24.83 319.30
2000 0.989 2.46 408.38 0.0033 1.63 0.15 308.51 0.16 0.997 24.61 310.66
2005 0.989 2.54 418.89 0.0032 1.00 0.14 307.87 0.13 0.997 27.24 308.11

leading to

P̂RSA(n) = 〈φn〉 = g

eβεn − 1
, (50)

to be compared with equation (37).
Figures 2–4 show the fits of five distinct models to

empirical data. The figures show that the data set is adequately
fit by more than a single model. Note that the optimal
fit for Model 5 occurs for g close to 0 (less than 0.25).
The derivation of equation (37) was carried out assuming a
non-zero integer value of g and thus the best-fit values are
worrisome. An ecological community is governed by niche
effects and is characterized by interactions between species
and by interactions between the species and the temporally
and spatially heterogeneous environment. Quantities such
as the relative species abundance can often be fit admirably
using expressions derived using simple assumptions. The
existence of a good fit does not of course necessarily
imply that the underlying assumptions are correct. Rather,
analytically tractable frameworks can be used to fit the gross
patterns observed and deviations from the predictions can
be used to assess what new ingredients must be added in
order to understand and predict the behavior of ecological
communities. We caution the reader that data-fitting exercises

such as the one that we are carrying out do not, in and of
themselves, determine the validity of a particular approach. At
best, they provide a guide to whether a given approximation is
capable of explaining the data or not.

6.2. Plant spatial distribution

The application of the maximum entropy principle to the
spatial distribution of trees in a forest yields the Poisson
distribution: the probability of observing n trees in a
subarea a is given by PPoisson(n, a) = e−ρa(ρa)n/n!, where
ρ is the density of trees in the plot. This is a standard
textbook result [29] and can be derived along the same lines
as equation (15) by replacing species 1 (in the previous
discussion) by a specific subarea and the remaining species by
other subareas. The species–area relationship, i.e. the average
number of species in the subarea a, is given by [14]

∑[1 −
P(0, a)], where the summation is performed over all species.
The clumping can be imposed as a constraint by generalizing
the maximum entropy principle to include spatial effects which
would lead to a field theory approach that is analogous to the
one used in both equilibrium and non-equilibrium statistical
physics [30].

10
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The Poisson distribution has the necessary property that a
merger of two subareas preserves the form of the distribution
with effective scale-dependent parameters, i.e.

P(n, a + b) =
n∑

m=0

P(m, a)P(n − m, b). (51)

The analysis of Harte et al [14] yields instead the geometric
distribution: Pgeom(n, a) ∝ [ρa/(ρa + 1)]n. The geometric
distribution does not satisfy the above convolution equation
and can at best strictly hold only at one length scale.
Indeed, these results are based on the implicit assumption
of indistinguishable (quantum) trees yielding an effective
interaction between trees analogous to that responsible for
Bose–Einstein condensation. In order to make the Harte
et al model operational at all scales, one needs to supply
additional information regarding the spatial correlations
between the quadrats, thus introducing new constraints and
further decreasing the entropy of the probability distribution.

One may compare data from the Barro Colorado island
tropical forest [31] to the results obtained by Harte et al
[14] and the Poisson distribution (figure 5). Consider a
species with abundance N and partition the area into k ×
k quadrats. The Harte et al model [14] predicts that the
fraction of quadrats in which at least one individual of the
species is present is given by g(a) = a N/(a N + 1), where
a = 1/k2. A random homogeneous distribution of trees
(Poisson distribution) predicts a higher fraction fP (a) = 1 −
exp(−a N) even though the two distributions coincide in the
limit of infinitesimal a N . Let us define d( f, g), the distance
between the two functions f (a) and g(a), to be equal to the
largest difference between them, i.e. d( f, g) = max | f (a) −
g(a)|, with a ∈ [0, 1]. Of the 305 species in the BCI forest,
there are 114 species that deviate from the Harte et al model
more than that model deviates from the Poisson distribution.
Also, one finds that there are 123 species that are closer to fP

than to fg .

7. Summary

The maximum entropy principle is an inference technique for
constructing an estimate of a probability distribution using
available information. In order to have a chance of obtaining
the correct results, one must carefully choose the appropriate
variables characterizing the system, one must consider issues
of distinguishability or lack thereof, one must know or guess
the reference entropy, and one must choose the constraints
wisely. We suggest that, in order to guarantee that the results
do not depend on the description level, one ought to maximize
the relative entropy subject to the known constraints. This
provides a natural interpretation of the relative entropy [23] in
the context of statistical physics. In order to be successful, the
method requires knowledge of the reference probability, which,
in turn, depends on the system dynamics. Alternatively [6, 19],
one could maximize the ordinary entropy H( �P), equation (3),
and continue to add additional constraints until one obtains
the correct �P . In order to obtain the correct answer, in the
absence of the reference entropy, one requires the knowledge

Figure 5. Species–area relationship for the BCI plot (solid line) and
averages over randomized data sets (dashed line). The data
randomization was carried out using an iterative procedure where at
each step a random pair of trees was picked and their positions
interchanged. The dashed curve is the species–area relationship
averaged over 100 random plots. The key reason for the difference
between the maximum entropy result (the dashed curve) and the
actual data (the solid curve) is the absence of clumping in the random
data. Interestingly, Harte et al [14] have demonstrated that the
application of the principle of maximum entropy under the
assumption of indistinguishable individuals yields a species–area
relationship in excellent accord with data. For the random sampling
of distinguishable individuals, this corresponds to weighting the
random plots in a physically unjustifiable manner. Consider the
species–area relationship for a plot of area A0 with N0 trees. One
may think of an alternative randomization procedure which may be
carried out as follows. Consider an initially empty subarea A < A0.
We envisage carrying out N0 steps; at each step one populates the
subarea with a tree with a probability p = A/A0. The resulting
abundance N of the subarea is distributed according to the binomial
distribution: P(N) = N0 !

N !(N0−N)! pN (1 − p)N0−N . As is
well-known [29], the binomial distribution becomes a Poisson
distribution in the limit of N0 → ∞ with fixed pN0. On aggregating
several subareas together, the abundance probability remains
binomial. The model proposed by Harte et al, which yields clustering
akin to that of the real data, is equivalent to another different,
artificial randomization procedure in which the iteration stops as
soon as a step does not lead to a new tree in the subplot. The
probability distribution is then represented by the geometric
distribution P(N) ∝ pN . Note that unlike the binomial, the
geometric distribution is not preserved when several areas are
aggregated together. This difference in randomization is an
observable consequence of the application of the maximum entropy
principle for a system with distinguishable (binomial distribution)
and indistinguishable (geometric distribution) individuals.

of which optimal constraints to use (e.g. the constraint on
the average value of ln n in the ecology illustration) or
the use of a large enough number of constraints [6] to
ensure convergence. Unfortunately, in general, there is no
a priori guarantee that either of these approaches will be
successful. Inspired by the ecology application, we have
introduced a novel statistical ensemble with indistinguishable
‘particles’ and indistinguishable ‘levels’ yielding a distribution
corresponding to that of a quantum oscillator.
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Appendix A. Properties of the entropy, H
We summarize here some of the key properties of
H, the entropy of the ‘distribution’ probability �P ≡
(P1, P2, . . . , PE ). This section is not strictly essential for the
understanding of the rest of the paper.

(1)
H( �P) � 0. (52)

This follows from the observation that, in equation (3), 0 �
Pi � 1 and lim

x→0+
x ln x = 0.

(2) H( �P) is a concave function.
A function f (x) of the real variable x is said to be convex

(i.e. − f (x) is concave) if

f (μx1 + (1 − μ)x2) � μ f (x1) + (1 − μ) f (x2) (53)

is valid for all pairs x1, x2 and 0 � μ � 1. If equation (53)
holds as an equality only when μ = 0, 1, f is said to be strictly
convex. It is easy to show by induction that equation (53)
implies

f

(∑

i

μi xi

)

�
∑

i

μi f (xi), μi � 0,
∑

i

μi = 1.

(54)
Before proving the concavity of H( �P), we also need the

following result: if f (x) has a second derivative f ′′(x) �
0(>0), then f is convex (strictly convex). Indeed, on using
Taylor’s theorem,

f (y) = f (x) + f ′(x)(y − x) + f ′′(ξ)
(y − x)2

2
,

where ξ is a suitable value in between x and y. Thus f (y) �
f (x) + f ′(x)(y − x) because f ′′(ξ) � 0. Taking x =
μx1 + (1 − μ)x2 and y = x1 and x2,

f (x1) � f (x) + (1 − μ)(x1 − x2) f ′(x),

f (x2) � f (x) + μ(x2 − x1) f ′(x)

and equation (53) follows. Strict inequality implies strict
convexity. Because −H( �P) is a sum of convex functions
f (x) = x ln x ( f ′′(x) = 1/x > 0 if x > 0), it is itself a
convex function, i.e. H( �P) is concave:

H(μ �P1 + (1 − μ) �P2) � μH( �P1) + (1 − μ)H( �P2). (55)

(3) H( �P) has only one maximum if the constraints are
linear in P . This result follows from property (2) above
and does not depend on its specific expression, equation (3).
However using equation (3), one sees that the matrix of second
derivatives, ∂2H( �P)/∂ Pi∂ Pj = −δi, j/Pi , is negative definite
and so at most one maximum exists.

In the case of just one constraint (6), one can easily see
that

H( �P0) > H( �P) ∀ �P �= �P0, (56)

where P0i = 1/E is the uniform distribution. In order to obtain
this result, let f (x) = x ln x . Then

−H( �P0)

E
= − ln E

E
= f

(
1

E

)

= f

(∑
i Pi

E

)

<
∑

i

1

E
f (Pi ) = −H( �P)

E
⇒ (56).

Thus the uniform distribution has the maximum entropy in the
absence of constraints.

(4) Why is the most probable distribution interesting and
what is the utility of the entropy? The answer is, in part,
contained in the ‘concentration theorem’ of Jaynes [7].

First, let us observe that if �P is the distribution which
maximizes the entropy Hmax = H( �P) > H( �P ′), �P �= �P ′.
The number of times that we obtain the distribution �n′ ≡
(n′

1, n′
2, . . .) = N �P ′ compared to the corresponding number

in which �n ≡ (n1, n2, . . .) = N �P is observed is given by

W (�n)

W (�n′)
∝ eN(Hmax−H(P ′))[1 + O(1/N)], (57)

where the exponential follows from (3). The concentration
theorem says that the fraction of the distributions �P ′ such that

N(Hmax − H(P ′)) ≡ N�H = x (58)

is given by

P(x) = xbe−x


(b + 1)
, (59)

where b = E−m−2
2 for m constraints, including the

normalization (m = 2 if we have only the constraint

equations (6) and (eq:1.8.1)). Since x = N�H = ∑
i

�P2
i

2Pi
N

(�Pi ≡ P ′
i − Pi ), due to the exponential decay in (59), the

most relevant distributions, Pi , are such that

|�Pi | �
√

Pi

N
(60)

which is equivalent to the well-known result that

�ni

N
� 1√

N
. (61)

Appendix B. A primer on Lagrange multipliers

A standard trick which is used to maximize/minimize a
function subject to constraints is to introduce Lagrange
multipliers. Suppose we want to determine the maximum of
f (x, y) = −x2 − y2 with the constraint ϕ(x, y) = y + x = 2.
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Of course this can be done immediately by finding y = 2 − x
from the constraints and maximizing f (x, 2 − x) = −2x2 +
4x − 4 with respect to x . This gives x = 1, y = 1,
f (1, 1) = −2. However, in practice it is not easy/convenient
to eliminate some of the variables from the constraints. Rather
one introduces a new function

F(x, y) = f (x, y) + λϕ(x, y) (62)

and maximizes/minimizes it with respect to both x and y as
they were independent variables not subject to constraints.
The parameter λ is the so-called Lagrange multiplier. The
equations to be solved for the maximum/minimum are

0 = ∂ F

∂x
= −2x + λ, (63)

0 = ∂ F

∂y
= −2y + λ (64)

which give x and y as a function of the parameter λ. This
free parameter is then used in order to satisfy the constraints
2 = x + y = λ which immediately leads to the exact answer
x = y = 1. Even if rather trivial, this example illustrates the
general method.
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